Astronomy News
 Night Sky 2020 - November

Sunrise	Sunset	Mercury Rises	Venus Rises
$\begin{gathered} 1^{\text {st }}-7: 04 \mathrm{am} \\ 10^{\text {th }}-7: 20 \mathrm{am} \\ 20^{\text {th }}-7: 36 \mathrm{am} \\ 30^{\text {th }}-7: 51 \mathrm{am} \end{gathered}$	$\begin{gathered} 1^{\text {st }}-4: 44 \mathrm{pm} \\ 10^{\text {th }}-4: 30 \mathrm{pm} \\ 20^{\text {th }}-4: 17 \mathrm{pm} \\ 30^{\text {th }}-4: 08 \mathrm{pm} \end{gathered}$	$\begin{gathered} 1^{\text {st }}-5: 51 \mathrm{am} \\ 10^{\text {th }}-5: 28 \mathrm{am} \\ 20^{\text {th }}-6: 03 \mathrm{am} \\ 30^{\text {th }}-6: 54 \mathrm{am} \end{gathered}$	$\begin{gathered} 1^{\text {st }}-3: 49 \mathrm{am} \\ 10^{\text {th }}-4: 15 \mathrm{am} \\ 20^{\text {th }}-4: 45 \mathrm{am} \\ 30^{\text {th }}-5: 16 \mathrm{am} \end{gathered}$
Moon Rise	Moon Set	Moon Rise	Moon Set
$\begin{gathered} 1^{\text {st }}-5: 24 \mathrm{pm}(\mathrm{ENE}) \\ 2^{\text {nd }}-5: 46 \mathrm{pm} \\ 3^{\text {rd }}-6: 15 \mathrm{pm} \\ 4^{\text {th }}-6: 52 \mathrm{pm} \\ 5^{\text {th }}-7: 40 \mathrm{pm} \\ 6^{\text {th }}-8: 38 \mathrm{pm} \\ 7^{\text {th }}-9: 47 \mathrm{pm} \\ 8^{\text {th }}-11: 02 \mathrm{pm} \\ 10^{\text {th }}-12: 22 \mathrm{am}(\mathrm{ENE}) \\ 11^{\text {th }}-1: 44 \mathrm{am} \\ 12^{2^{\text {th }}-3: 08 \mathrm{am}(\mathrm{E})} \\ 13^{\text {th }}-4: 34 \mathrm{am} \\ 14^{\text {th }^{\text {h }}-6: 03 \mathrm{am} \mathrm{(ESE)}} \\ 15^{\text {th }}-7: 32 \mathrm{am} \\ 16^{\text {th }}-9: 00 \mathrm{am} \\ 17^{\text {th }}-10: 21 \mathrm{am} \\ 18^{\text {th }}-11: 30 \mathrm{am} \\ 19^{\text {th }}-12: 22 \mathrm{pm} \end{gathered}$	$\begin{gathered} 1^{\text {st }}-7: 40 \mathrm{am}(\mathrm{WNW}) \\ 2^{\text {nd }}-8: 49 \mathrm{am} \\ 3^{\text {rd }}-9: 56 \mathrm{am} \\ 4^{\text {th }}-11: 01 \mathrm{am} \\ 5^{\text {th }}-12: 01 \mathrm{pm} \\ 6^{\text {th }}-12: 52 \mathrm{pm} \\ 7^{\text {th }}-1: 33 \mathrm{pm} \\ 8^{\text {th }}-2: 06 \mathrm{pm} \\ 9^{\text {th }}-2: 33 \mathrm{pm}(\mathrm{WNW}) \\ 10^{\text {th }}-2: 56 \mathrm{pm} \\ 11^{\text {th }}-3: 16 \mathrm{pm} \\ 12^{\text {th }}-3: 35 \mathrm{pm}(\mathrm{~W}) \\ 13^{\text {th }}-3: 55 \mathrm{pm} \\ 14^{\text {th }}-4: 18 \mathrm{pm}(\mathrm{WSW}) \\ 15^{\text {th }}-4: 46 \mathrm{pm} \\ 16^{\text {th }}-5: 21 \mathrm{pm} \\ 17^{\text {th }}-6: 08 \mathrm{pm} \\ 18^{\text {th }}-7: 06 \mathrm{pm} \\ 19^{\text {th }}-8: 14 \mathrm{pm} \end{gathered}$	$\begin{gathered} 20^{\text {th }}-1: 01 \mathrm{pm} \\ 21^{\text {st }}-1: 30 \mathrm{pm} \\ 22^{\text {nd }}-1: 53 \mathrm{pm}(\mathrm{ESE}) \\ 23^{\text {rd }}-2: 11 \mathrm{pm} \\ 24^{\text {th }}-2: 27 \mathrm{pm} \\ 25^{\text {th }}-2: 41 \mathrm{pm}(\mathrm{E}) \\ 26^{\text {th }}-2: 56 \mathrm{pm} \\ 27^{\text {th }}-3: 12 \mathrm{pm} \\ 28^{\text {th }}-3: 30 \mathrm{pm}(\mathrm{ENE}) \\ 29^{\text {th }}-3: 51 \mathrm{pm} \\ 30^{\text {th }}-4: 17 \mathrm{pm} \\ ------- \\ \text { All times } \\ \text { in notes are set } \\ \text { for } \\ \text { Somerton } \\ \text { unless stated } \end{gathered}$	$\begin{gathered} 20^{\text {th }}-9: 27 \mathrm{pm} \\ 21^{\text {st }}-10: 40 \mathrm{pm} \\ 22^{\text {nd }}-11: 52 \mathrm{pm}(\mathrm{WSW}) \\ 24^{\text {th }}-1: 01 \mathrm{am} \\ 25^{\text {th }}-2: 08 \mathrm{am}(\mathrm{~W}) \\ 26^{\text {th }}-3: 15 \mathrm{am} \\ 27^{\text {th }}-4: 22 \mathrm{am} \\ 28^{\text {th }}-5: 30 \mathrm{am}(\mathrm{WNW}) \\ 29^{\text {th }}-6: 38 \mathrm{am} \\ 30^{\text {th }}-7: 47 \mathrm{am} \\ ------- \\ \text { Moon Phases } \\ \text { Last Quarter }-8^{\text {th }} \\ \text { New Moon }-15^{\text {th }} \\ \text { First Quarter }-22^{\text {nd }} \\ \text { Full Moon }-30^{\text {th }} \end{gathered}$
A useful site: www.heavensabove.com	A S Zielonka		

There is a planned launch (No earlier than November)* of SpaceX Crew-1 to the ISS. Crew Dragon commander Michael Hopkins, pilot Victor Glover, mission specialist Shannon Walker of NASA and Japan Aerospace Exploration Agency (JAXA) mission specialist Soichi Noguchi will launch on the Crew-1 mission from Kennedy Space Centre in Florida. (For further information please last months newsletter).

This month Jupiter gets 3 degrees closer to Saturn. By the end of this month they will be just $2^{1 / 1 / 4}$ degrees apart. At $6: 00 \mathrm{pm}$ on the $30^{"}$ Jupiter is $91 / 2$ degrees above the horizon in the south west at 216.5 degrees azimuth.

On the 1" at 9:00pm the star 16369 'Hipparcos Catalogue ID' (4.1 mag) is 3 degrees lower right of the moon. The Pleiades star cluster is $91 / 2$ degrees to the upper right of the moon.

From the $1^{\text {st }}-3^{\text {rd }}$ Comet 88 P Howell ($9.5 \mathrm{mag}-$ Oct $18^{\text {th }}$) will be passing close to the star Nunki (2nd mag) in Sagittarius. On the $2^{\text {nd }}$ at $7: 00 \mathrm{pm}$ their just $1 / 2$ a degree apart. (For further information on this comet or others listed, please see the 'Comet' section in the website above)

From the $1^{n}-4^{\text {di }}$ Mercury passes close to the star Spica (1st mag) in Virgo. On the $2^{\text {nd }}$ at 6:15am low in the ESE Spica will be 4 degrees to the right of Mercury. Mercury is at 109.5 degrees azimuth and they are both $41 / 2$ degrees above the horizon. Mercury is at perihelion on the $2^{n d}$.

At 2:00am on the night of $2^{\text {nd }}$ the star Ain (3.5mag) in Taurus is $1 \frac{1}{4}$ degrees to the lower left of the moon.
On November $2^{\text {nd }}$ at 4:00am Vesta will be 5 degrees from Regulus towards the star Chertan (3.3 mag). (For details on this or others, please see the "Asteroid" section in the website above).

Comet C/2020 P1 Neowise ($10.1 \mathrm{mag}-$ Oct $5^{\text {th }}$) is in the constellation of Bootes this month. On the $3^{\text {rd }}$ at 6:30am the stars Spica (1st mag) and Zeta Virginis (3.3 mag) in Virgo point the way to Neowise. Its position is approximately midway between the stars Muphrid (2.6 mag) in Bootes and Zeta Virginis.

From the $4^{\mathrm{n}}-6^{\mathrm{nt}}$ Venus passes close to the star Porrima (2.7 mag) in Virgo. On the 5^{nt} at $6: 15 \mathrm{am}$ in the ESE Porrima is just 1 degree above left of Venus.

On the $4^{\text {n }}$ at 6:00am the star Zeta Tauri (2.9 mag) in Taurus is 4 degrees to the left of the moon and 1 degree above.

At 6:00am on the $5^{\text {m }}$ the Star Propus (3.3mag) in Gemini is $13 / 4$ degrees below the moon and $3 / 4$ of a degree to the left.

On the $6^{\text {th }}$ at 6:00am the star Wasat (3.5mag) in Gemini is 3 degrees to the left of the moon and 1 degree below.

At 9:00pm on the $6^{\text {n }}$ the star Kappa Geminorum (3.5 mag) in Gemini is just $13 / 4$ degrees above the moon low in the north east, then at $11: 45 \mathrm{pm}$ Castor $(1.5 \mathrm{mag})$ and Pollux (1.1mag) point the way to the moon.

On the $7^{\text {min }}$ at 11:00pm the Beehive Star Cluster is 3 degrees to the right of the moon.
At 6:30am on the $9^{\text {m }}$ the star Eta Leonis (3.4mag) in Leo is 2 degrees to the left of the moon.
Mercury reaches maximum western elongation from the Sun on the 10^{*}.
There is a planned launch on the $10^{\text {th }}$ at $7: 31 \mathrm{pm}$ from Vandenberg Air Force base in California of the Sentinel-6 Michael Freilich Satellite. This ocean observation satellite is part of the Sentinel-6/Jason-CS mission. This U.S.- European collaboration will add to a longterm sea level dataset.

The Taurids meteor shower reach their peak on the $10^{\text {th }} / 11^{\text {th }}$ November, though they can be seen from the $19^{\text {th }}$ October $-9^{\text {th }}$ December.

On the $11^{\text {d }}$ at $6: 30 \mathrm{am}$ the star Denebola (2.1mag) in Leo is $81 / 2$ degrees above left of the crescent moon.
From the $12^{\text {th }}-21^{\text {st }}$ Comet 88 P Howell (9.5 mag - Oct $18^{\text {th }}$) will be passing below Jupiter and Saturn (from right to left). On the $19^{\text {th }}$ Howell will be just $11 / 2$ degrees below right of the Crescent moon.

At 6:30am on the $12^{\text {n }}$ the star Porrima (2.7 mag) in Virgo is just 2 degrees to the lower right of the crescent moon with Venus 10 degrees to the lower left.

On the $13^{\text {m }}$ at $6: 30$ am Venus is $51 / 2$ degrees above right of a thin crescent moon. Mercury is $81 / 2$ degrees to the lower left of the moon and 8 degrees above the horizon at 117 degrees azimuth.

From the $13^{\text {th }}-14^{\text {th }}$ Comet $\mathrm{C} / 2020 \mathrm{M} 3$ Atlas (8th mag - Oct $20^{\text {th }}$) is 0.358 AU and closest to the earth. Its also in the constellation of Orion. On the $15^{\text {th }}$ its less than $1 / 2$ a degree from the star Bellatrix (1.6 mag). On the $14^{\text {m }}$ at 6.30 am Mercury is 6 degrees upper right of a very thin crescent moon which is 3 degrees above the ESE horizon at 113 degrees azimuth. The moon is at perigee $(357,837 \mathrm{~km})$ on the $14^{\text {n }}$ at $11: 44 \mathrm{am}$.

From the $15^{m}-19^{\text {m }}$ Venus passes close to the star Spica (1st mag) in Virgo. On the $17^{\text {m }}$ at $6: 15 \mathrm{am}$ Spica is 4 degrees to the upper left of Venus.

On the $16^{\text {t }}$ at $4: 50 \mathrm{pm}$ a very thin crescent moon will be seen low in the south west. It will be 3 degrees above the horizon at 236.5 azimuth.

Comet C/2020 S3 Erasmus ($10.7 \mathrm{mag}-$ Oct $20^{\text {th }}$) is at perihelion on December $13^{\text {th }}$ when it will be just 0.423 AU from the Sun. On the $16^{\text {th }}$ Erasmus is less than a $1 / 4$ of a degree from the star Gienah (2.5 mag) in the constellation of Corvus.

At $5: 00 \mathrm{pm}$ on the 17 m a thin crescent moon will be seen in the south west. It will be 6 degrees above the horizon at 215.5 degrees azimuth.
 the star Omega Piscium (4th mag) in Pisces. At 7:45pm on the $28^{* *}$ its less than a ${ }^{1 / 4}$ of a degree from it and due south. Its also 15 degrees to the right of Mars.

The Leonids meteor shower reach their peak on the $17^{\text {th }} / 18^{\text {th }}$ though they can be seen from the $5^{\text {th }}-29^{\text {th }}$.
On the $18^{\text {n }}$ at $5: 00 \mathrm{pm}$ the star Nunki (2 mag) in Sagittarius is $13 / 4$ degrees to the lower right of the crescent moon. Jupiter is 10 degrees upper left of the moon with Saturn is $31 / 2$ degrees left of Jupiter.

At $5: 00 \mathrm{pm}$ on the $19{ }^{\text {" }}$ Saturn is 4 degrees above the crescent moon. Jupiter is $5^{1 ⁄} / 4$ degrees to the upper right of the moon.

From the $21^{* *}-23^{*}$ Mercury passes close to the star Zubenelgenubi (2.7 mag) in Libra. On the $22^{\text {wa }}$ at 6:45am Mercury will be $1^{11 / 4}$ degrees to the upper left of the star. Mercury is $4^{1 / 1 / 4}$ degrees above the horizon and at 121 degrees azimuth.

On the 21* at 8:00pm the star Delta Capricorni (2.8 mag) in Capricorn is just $3^{1 ⁄ 1 / 4}$ degrees to the right of the moon and 1 degree above.

At $8: 00 \mathrm{pm}$ on the 22^{w} the star Tau Aquarii (4 mag) in Aquarius is 1 degree to the upper left of the moon. An occultation of this star by the moon occurs at 10:10:54pm approx. (This time is set for Langport).

From the $22^{w}-25^{n}$ the asteroid Ceres will pass within $11 / 2$ degrees to the star Skat (3.2 mag) in Aquarius.
On the 23 at $9: 00 \mathrm{pm}$ Neptune is $5 \frac{1}{4}$ degrees to the upper right of the moon. Neptune is also just 1 degree to the upper left of the star Phi Aquarii (4.2 mag) in Aquarius.

At $6: 00 \mathrm{pm}$ on the 24^{n} the star Iota Ceti (3.5 mag) in Cetus is $4^{1 / 4}$ degrees below the moon.
On the $25^{\text {m }}$ at midnight Mars is 5 degrees to the upper right of the moon.
At 6:00pm on the 26^{n} the star Nu Piscium (4.4 mag) in Pisces is less than half a degree to the upper left of the moon.

The moon is at apogee ($405,894 \mathrm{~km}$) on the 27 wa $12: 29 \mathrm{am}$. At $6: 00 \mathrm{pm}$ Uranus is $31 / 2$ degrees above the moon and $1 \frac{1}{2}$ degrees to the left. At midnight the star Mu Ceti (4.2 mag) in Cetus is 3 degrees to the left of the moon with Uranus $33 / 4$ degrees to the right and $11 / 2$ degrees above.

On the 28 " at midnight the star 16369 "Hipparcos Cat ID" (4.1 mag) in Taurus is 3 degrees below left of the moon.

At 7:00am on the 30^{n} low in the WNW the star Ain (3.5 mag) is 2 degrees to the left of the moon and 1 degree above. Aldebaran (0.8 mag) is 5 degrees to the left of the moon.

There is a Penumbral Lunar Eclipse on the 30°. As the penumbral phase starts at 7:32:21am (and the moon setting at 7:47am) its unlikely any of it will be seen from the UK. This is the last and longest lunar eclipse of the year. The penumbral phase will last 4 hours 20 mins 59 secs . Greatest eclipse is at 9:42:49am.

* $=$ Dates and times are subject to change.

News: Solar Orbiter: The science payload is composed of 10 instruments.
8/10) STIX - Spectrometer Telescope for Imaging X-rays (Switzerland): Provides imaging spectroscopy of solar thermal and non-thermal X-ray emission from 4 to 150 keV . STIX provides quantitative
information on the timing, location, intensity and spectra of accelerated electrons as well as of hightemperature thermal plasmas, mostly associated with flares and /or microflares.

News: It was announced on $19^{\text {th }}$ October by astrophysicist Neil deGrasse Tyson that an asteroid called 2018 VP1 is scheduled to zip path Earth this month, on the $2^{\text {nd }}$. Researchers discovered 2018 VP1 using telescopes at the Zwicky Transient Facility at Caltech's Palomar Observatory in California. Because of its small size, scientists have had a tough time keeping track of the object and plotting its trajectory. It currently has a 0.41 percent chance of entering our planet's atmosphere but if it did, it would disintergrate due to its extremely small size.

Facts: The closest ever recorded approach by an asteroid occurred on August $16^{\text {th }}$, when 2020 QG flew 1,830 miles above the surface of the Earth. Scientists at Zwicky spotted the SUV-sized asteroid about 6 hours after the close call as it zipped away from Earth.

