Astronomy News

Night Sky 2022 - February

Sunrise	Sunset	Mercury Rises	Venus Rises
$\begin{gathered} 1^{\text {st }}-7: 48 \mathrm{am} \\ 10^{\text {th }}-7: 33 \mathrm{am} \\ 20^{\text {th }}-7: 14 \mathrm{am} \\ 28 \mathrm{th}-6: 58 \mathrm{am} \end{gathered}$	$\begin{gathered} 1^{\text {st }}-5: 02 \mathrm{pm} \\ 10^{\text {th }}-5: 18 \mathrm{pm} \\ 20^{\text {th }}-5: 36 \mathrm{pm} \\ 28^{\text {th }}-5: 50 \mathrm{pm} \end{gathered}$	$\begin{aligned} & 1^{\text {st }}-6: 44 \mathrm{am} \\ & 10^{\text {th }}-6: 25 \mathrm{am} \\ & 20^{\text {th }}-6: 23 \mathrm{am} \\ & 28^{\mathrm{th}}-6: 23 \mathrm{am} \end{aligned}$	$\begin{gathered} 1^{\text {st }}-5: 35 \mathrm{am} \\ 10^{\text {th }}-5: 12 \mathrm{am} \\ 20^{\text {th }}-4: 58 \mathrm{am} \\ 28^{\text {th }}-4: 51 \mathrm{am} \end{gathered}$
Moon Rise	Moon Set	Moon Rise	Moon Set
$\begin{gathered} 1^{\text {st }}-8: 33 \mathrm{am} \\ 2^{\text {th }}-8: 59 \mathrm{am}(\mathrm{ESE}) \\ 3^{\text {rd }}-9: 19 \mathrm{am} \\ 4^{\text {th }}-9: 36 \mathrm{am} \\ 5^{\text {th }}-9: 50 \mathrm{am}(\mathrm{E}) \\ 6^{\text {th }}-10: 04 \mathrm{am} \\ 7^{\text {th }}-10: 19 \mathrm{am} \\ (\mathrm{ENE}) \\ 8^{\text {th }}-10: 36 \mathrm{am} \\ 9^{\text {th }}-10: 56 \mathrm{am} \\ 10^{\text {th }}-11: 21 \mathrm{am} \\ 11^{\text {th }}-11: 55 \mathrm{am} \\ 12^{\text {th }}-12: 39 \mathrm{pm} \\ (\mathrm{NE}) \\ 13^{\text {th }}-1: 34 \mathrm{pm} \\ 14^{\text {th }}-2: 38 \mathrm{pm} \\ 15^{\text {th }}-3: 50 \mathrm{pm} \\ 16^{\text {th }}-5: 05 \mathrm{pm} \\ 17^{\text {th }}-6: 21 \mathrm{pm} \\ (\mathrm{ENE}) \\ 18^{\text {th }}-7: 38 \mathrm{pm} \end{gathered}$	$\begin{gathered} 1^{\text {st }}-5: 10 \mathrm{pm} \\ 2^{\text {nd }}-6: 37 \mathrm{pm} \\ (\mathrm{WSW}) \\ 3^{\text {rd }}-7: 59 \mathrm{pm} \\ 4^{\text {th }}-9: 18 \mathrm{pm}(\mathrm{~W}) \\ 5^{\text {th }}-10: 33 \mathrm{pm} \\ 6^{\text {th }}-11: 46 \mathrm{pm} \\ 8^{\text {th }}-12: 58 \mathrm{am} \\ (\mathrm{WNW}) \\ 9^{\text {th }}-2: 09 \mathrm{am} \\ 10^{\text {th }}-3: 19 \mathrm{am} \\ 11^{\text {th }}-4: 25 \mathrm{am} \\ 12^{\text {th }}-5: 25 \mathrm{am} \\ (\mathrm{NW}) \\ 13^{\text {th }}-6: 16 \mathrm{am} \\ 14^{\text {th }}-6: 56 \mathrm{am} \\ 15^{\text {th }}-7: 27 \mathrm{am} \\ 16^{\text {th }}-7: 52 \mathrm{am} \\ 17^{\text {th }}-8: 11 \mathrm{am} \\ (\mathrm{WNW}) \\ 18^{\text {th }}-8: 28 \mathrm{am} \\ 19^{\text {th }}-8: 42 \mathrm{am}(\mathrm{~W}) \end{gathered}$	$\begin{array}{\|c} 1^{\text {th }}-8: 55 \mathrm{pm}(\mathrm{E}) \\ 20^{\text {th }}-10: 14 \mathrm{pm} \\ 21^{\text {st }}-11: 34 \mathrm{pm} \\ (\mathrm{ESE}) \\ 23^{\mathrm{rd}}-12: 58 \mathrm{am} \\ 24^{\text {th }}-2: 22 \mathrm{am} \\ 25^{\text {th }}-3: 43 \mathrm{am} \\ 26^{\text {th }}-4: 54 \mathrm{am} \\ (\mathrm{NE}) \\ 27^{\text {th }}-5: 50 \mathrm{am} \\ 28^{\text {th }}-6: 31 \mathrm{am} \\ ------ \\ \text { All times } \\ \text { in notes are set } \\ \text { for } \\ \text { Somerton } \\ \text { unless stated } \end{array}$	$\begin{gathered} 20^{\mathrm{th}}-8: 57 \mathrm{am} \\ 21^{\mathrm{st}}-9: 12 \mathrm{am} \\ 22^{\mathrm{nd}}-9: 30 \mathrm{am} \\ (\mathrm{WSW}) \end{gathered}$ $23 \mathrm{rd} \text { - 9:53am }$ $24^{\mathrm{th}}-10: 23 \mathrm{am}$ $25^{\mathrm{th}}-11: 06 \mathrm{am}$ $26^{\mathrm{th}}-12: 04 \mathrm{pm}$ (NW) $\begin{aligned} & 2^{\text {th }}-1: 17 \mathrm{pm} \\ & 28^{\text {th }}-2: 41 \mathrm{pm} \end{aligned}$ Moon Phases New Moon - $1^{\text {st }}$ First Quarter - $8^{\text {th }}$ Full Moon $-16^{\text {th }}$ Last Quarter 23 rd
A useful site: www.heavens- above.com	A S Zielonka		

An occultation of the star Zubenelgenubi (2.7 mag) in Libra by the Moon occurs on the morning of 26th January. It disappears at 5:34:51am and reappears at 6:44:19am. (These times are set for Yeovilton)

February

From the $1^{\text {st }}-10^{\text {th }}$ Comet C/2019 L3 Atlas (8.8 mag - 14it Jan) passes close to the star Mebsuta (3 mag) in Gemini. On the 4th at $9: 00 \mathrm{pm}$ it will be 1 degree above the star, then on $5^{\text {th }}, 6^{\text {thand }} 7^{\text {th }}$ it will be approx $3 / 4$ of a degree to the upper right of the star. On the $10^{\text {th }}$ at the same time the comet will be $1 \frac{1}{4}$ degrees to the right of the star.

On the $2^{\text {nd }}$ at $5: 45 \mathrm{pm}$ Jupiter is $61 / 2$ degrees above a very thin crescent Moon and 1 degree to the right. The Moon is just 6 degrees above the horizon.

At 5:45pm on the 3 rd the star Psi Aquarii (4.4 mag) is $1 \frac{1}{4}$ degrees to the right of the crescent Moon. Jupiter is $103 / 4$ degrees to the lower right of the Moon. Neptune is 6 degrees above the Moon and 1 degree to the right.

Saturn is at superior conjunction on the $4^{\text {th }}$.

On the $4^{\text {th }}$ at $6: 00 \mathrm{pm}$ Neptune is $81 / 2$ degrees to the right of the Moon and 5 degrees below. The star Mu Ceti (4.2 mag) in Cetus is $5^{11 / 4}$ degrees to the lower left of the Moon.

At $6: 00 \mathrm{pm}$ on the $6^{\text {th }}$ the star Omicron Piscium (4.2 mag) is $13 / 4$ degrees above the crescent Moon.

On the $7^{\text {th }}$ at $6: 30 \mathrm{pm}$ Uranus is 2 degrees above the crescent Moon.

At 9:30pm on the $8^{\text {th }}$ the Pleiades star cluster is $81 / 2$ degrees above the Moon.
On the $9^{\text {th }}$ at $6: 00 \mathrm{pm}$ the Moon is approximately midway between the Hyades and Pleiades star clusters.

At 6:00pm on the $10^{\text {th }}$ the Moon is approximately midway between the stars Elnath (1.6 mag) and Ain (3.5 mag) in Taurus.

The Moon is at apogee $(404,897 \mathrm{~km})$ on the $11^{\text {th }}$ at $2: 38 \mathrm{am}$. At $6: 00 \mathrm{pm}$ Zeta Tauri (2.9 mag) is 5 degrees to the right of the Moon and $11 / 2$ degrees below.

At 6:00pm on the $12^{\text {th }}$ the star Mebsuta (3 mag) in Gemini is 1 degree lower right of the Moon.

On the $13^{\text {th }}$ at $9: 00 \mathrm{pm}$ the Moon lies between the stars Kappa Geminorum (3.5 mag) and Upsilon Geminorum (4 mag). Kappa Geminorum is 1 degree below the Moon and slightly left.

At $10: 00 \mathrm{pm}$ on the $14^{\text {th }}$ the Beehive star cluster is $31 / 2$ degrees below the near full Moon.

On the $1^{\text {th }}$ at midnight the two stars Rasalas (3.8 mag) and Epsilon Leonis (3.9 mag) point the way to the Moon.

Mercury reaches maximum western elongation from the Sun on the $1^{\text {th }}$.

There is a close conjunction of Venus and Mars on the morning of the $16^{\text {th }}$ in the south east. At 6:10am Mars is 6 degrees below Venus and $21 / 2$ degrees to the right. Venus is $81 / 2$ degrees above the horizon at 131 degrees azimuth with Mars $23 / 4$ degrees above the horizon at 133.5 degrees azimuth.

At 7:00pm on the $16^{\text {th }}$ the star Eta Leonis (3.4 mag) is $2^{1 ⁄ 1}$ degrees above the Moon and $1 / 2$ a degree to the right.

On the $18^{\text {th }}$ at $10: 00 \mathrm{pm}$ the star Zavijava (3.5 mag) in Virgo is 3 degrees to the right of the Moon and $1 \frac{1}{4}$ degrees below.

There is a scheduled launch on the $19 \mathrm{~h} *$ at $5: 39 \mathrm{pm}$ from Wallops Flight Facility on Wallops Island, Virginia. Its Northrop Grumman's 17th commercial ressupply mission to the International Space Station (ISS).

At 10:00pm on the $1^{\text {th }}$ the star Porrima (2.7 mag) in Virgo is 1 degree to the upper right of the Moon then at $11: 00$ pm Porrima is $11 / 2$ degrees to the upper right of the Moon with a fainter star appoximately midway between though nearer Porrima.

On the $20^{\text {th }}$ at $11: 30 \mathrm{pm}$ the star Spica (1 mag) in Virgo is $4 \frac{1}{4}$ degrees to the right of the Moon and $11 / 2$ degrees below.

At 11:45pm on the $21^{\text {st }}$ the Moon is just above the horizon in the ESE at 113 degrees azimuth.

On the $23^{\text {rd }}$ at 6:00am the star Gamma Librae (3.9 mag) is $5^{1 ⁄ 2}$ degrees above the Moon.

At 6:00am on the $24^{\text {th }}$ the star Antares (1 mag) in Scorpius is $2^{1 / 2}$ degrees below the crescent Moon and $1 / 2$ a degree to the right.

On the 25th at 6:00am the star Theta Ophuichi (3.2 mag) is 3 degrees above right of the crescent Moon.

At 6:15am on the $26^{\text {th }}$ the star Phi Sagittarii (3.1 mag) is $13 / 4$ degrees to the left of the crescent Moon. The Moon is at perigee $(367,789 \mathrm{~km})$ at $10: 26 \mathrm{pm}$.

On the $27^{\text {th }}$ at $6: 15 \mathrm{am}$ a thin crescent Moon is 2 degrees above the south east horizon at 138.5 azimuth. Venus is 10 degrees above left of the Moon with Mars approximately midway between them and a degree or two to the left. Mars is 5 degrees from the Moon.

Mercury is at aphelion on the $28^{\text {th }}$.
There is a planned launch on the $28 \mathrm{th}^{\mathrm{t}}$ from the Kennedy Space Centre in Florida. The spaceflight, designated as Axiom Mission 1 (Ax-1) will travel to the ISS. Once docked, the Axiom astronauts are scheduled to spend eight days aboard the orbiting laboratory. NASA and Axiom mission planners will coordinate in-orbit activities for the private astronauts to conduct in coordination with space station crew members and flight controllers on the ground. This is the first of two tourist flights scheduled for 2022.

* = Dates and times are subject to change.

News: The first flight of NASA's X-57 will take place at the Armstrong Flight Centre in California in the Spring. It is a small, experimental airplane powered by electricity. An All-electric technology will make flying cleaner, quieter and more sustainable.

Kicking off the lunar launch list for 2022 is Artemis 1, lifting off no earlier than March though this could be in the Summer. This is the inaugural flight of the Space

Launch System (SLS), NASA's heavy-lift rocket that is key to the Artemis initiative to return humans to the Moon. Artemis 1 is uncrewed and will put the Orion MultiPurpose Crew Vehcle in a six-day retrograde orbit around the Moon before returning it to Earth. Artemis 1 will also deploy several CubeSat payloads.

The deployment of James Webb Space Telescope's (JWST"s) 18 segment primary mirror occurred during early January. Around the 23rd January, 29 days post-launch, thrusters will fire to put the telescope into a halo orbit around the Sun-Earth L2 point approximately a million miles from Earth.

Facts: The Pulkovo Observatory near St Petersburg was opened in 1839. It was the brainchild of the German/Russian astronomer Friedrich Georg Wilhelm von Struve who became its first director. The architect was Alexander Bryullov. The observatory was equipped with state-of-the-art devices, one of them being a 15 inch aperture refractor, one of the largest refractors in the world at that time. During the Siege Of Leningrad in World War 2 all the builings were destroyed, though the main instruments were saved and stored safely in Leningrad. In May 1954 it was reopened.

